
Digital Object Identifier (DOI) 10.1007/s00211-003-0476-7
Numer. Math. (2003) Numerische

Mathematik

Almost optimal interior penalty discontinuous
approximations of symmetric elliptic problems
on non-matching grids

R.D. Lazarov1, J.E. Pasciak1, J. Schöberl2, P.S. Vassilevski3
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Summary. We consider an interior penalty discontinuous approximation for
symmetric elliptic problems of second order on non-matching grids in this
paper. The main result is an almost optimal error estimate for the interior
penalty approximation of the original problem based on partitioning of the
domain into a finite number of subdomains. Further, an error analysis for
the finite element approximation of the penalty formulation is given. Finally,
numerical experiments on a series of model second order problems are pre-
sented.
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1 Introduction

In this paper, we propose and analyze a simple strategy for constructing
composite discretizations of self-adjoint second order elliptic equations on
non-matching grids. The need for discretizations on non-matching grids is
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motivated partially from the desire for parallel discretization methods (includ-
ing adaptive) for PDEs, which is a much easier task if non-matching grids
are allowed across the subdomain boundaries. Another situation may arise
when different discretization techniques are utilized in different parts of the
domain.

In the present paper, we consider a model situation when the domain is
split into a fixed number of non-overlapping subdomains and each subdomain
is meshed independently. This is a non-conforming method and the functions
are, in general, discontinuous across the subdomain interfaces. The jump in
the values of the function along the interface is “penalized” in the variational
formulation, a standard approach in the interior penalty method (cf. [2], [4],
[15], [25]).

Formulations that impose various constraints by penalty terms have been
used in engineering computations and mathematically justified in the pio-
neering works of Lions [22], Babuška [5], and Nitsche [24]. For a recent
comprehensive survey on this subject, see [3]. An important feature of the
method we consider is that the term in the weak formulation involving the
co-normal derivative of the solution on the interface boundaries is omitted.
Such terms are added to the functional for consistency but often lead to a
non-symmetric discretization (cf. [25]) of the original symmetric positive
definite problem.

An alternative technique for dealing with non-matching grids involves
the use of Lagrange multipliers or mortar spaces. There are a vast number of
publications devoted to the mortar finite element method as a general strat-
egy for deriving discretization methods on non-matching grids. We refer the
interested reader to the series of Proceedings of the International Conferences
on Domain Decomposition Methods (cf. [6], [12], [18] [for more information
see, http://www.ddm.org]).

The motivation for studying this method, even though its convergence
order is limited, is that it has some advantages over the competing methods.
For example, mortar discretizations and discontinuous Galerkin methods lead
to linear systems that are more difficult to solve. The method discussed here
leads to a symmetric algebraic problem with optimal conditioning.

The method we consider, the interior penalty finite element approxima-
tion, was studied and tested on various examples in [21]. The error estimates
derived in [21] were suboptimal with a loss of a factor h1/2−δ, 0 < δ < 1/2
for solutions in the Sobolev space H 2−δ(�). In this paper we present a refined
analysis and get almost optimal error estimates for linear finite element and
solutions in H 2−δ(�). In addition, we extend the analysis to decompositions
with cross points.

In the case of matching grids, the finite element Galerkin method with
penalty for a class of problems with discontinuous coefficients (interface
problem) has been studied in [4]. Similarly, in [11], the interface problem
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has been addressed by recasting the problem as a first order system (by intro-
ducing the gradient of the solution as a new vector variable) and applying
the least-squares method to the system. Integrals of the squared jump in the
scalar and the normal component of the vector functions on the interface
are added as penalty terms in the least-squares functional. In both cases, an
optimal order method leads to discrete problem with non-optimal condition
number.

Other approaches for handling discretizations on non-matching grids
involve different discretizations in the different subdomains, for example,
a mixed finite element method in one subdomain coupled with a standard
Galerkin method in the other (proposed in [28] and studied further in [19]), a
mixed finite element method coupled with a discontinuous Galerkin method
(cf. [14]) or mixed finite element discretizations in both subdomains (cf. [1],
[20]). Similarly, the coupling finite volume method and the Galerkin methods
was proposed and studied in [16].

The structure of the present paper is as follows. In Section 2, we formulate
the problem. In Section 3, we introduce the primal and dual penalty formula-
tions of the problem split into subproblems on non-overlapping subdomains.
To get an optimal error estimate, we introduce the mixed formulation of
the penalty problem and derive a fundamental a priori error estimate for its
solution (in Section 4). In Section 5, we analyze the difference between the
solution of the original problem and the solution of the penalty formulation.
The error is shown to be of almost optimal order for u ∈ H 2−δ(�) for δ ≥ 0.
For methods without cross-points, the error is optimal for 1/2 > δ > 0.
Finally, the finite element discretization and its error analysis is presented
in Section 6. Numerical tests illustrating the accuracy of the method for two
model problems are given there as well.

2 Notations and problem formulation

In this paper we use the standard notation for Sobolev spaces of functions
defined in a bounded domain � ⊂ Rd , d = 2, 3. For example, Hs(�) for
s integer denotes the Hilbert space of functions u defined on � and having
generalized derivatives up to order s that are square integrable in �. For non-
integer s > 0, the spaces are obtained by the real method of interpolation
(cf. [23]). H 1

0 (�) is the space of functions in H 1(�), which vanish on ∂�.
The norm of u ∈ Hs(�) is denoted by ||u||s,�. We also use the notation
|u|s,� for the s-order semi-norm. For the traces of functions in H 1

0 (�) on
a manifold � of dimension d − 1 (curves and surfaces) and ∂� ⊂ ∂�, we
will sometimes use the fractional order Sobolev spaces commonly denoted
by H

1/2
00 (�), which is defined to be the interpolation space halfway between

H 1
0 (�) and L2(�).
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For a given Hilbert space H with an inner product (·, ·)H and correspond-
ing norm ‖ · ‖H , we denote H ∗ to be the dual, i.e., the space of all continuous
linear functionals on H . We use the fact that (H

1/2
00 (�))∗ = H−1/2(�).

For a given bounded polygon (polytope) �, a source term f ∈ L2(�) and
a symmetric and uniformly positive definite and bounded coefficient matrix
a(x) on �, we consider the following model boundary value problem in a
weak form: find u ∈ H 1

0 (�) such that:

A(u, v) = f (v) for all v ∈ H 1
0 (�).(2.1)

Here A(u, v) = ∫
�

a∇u · ∇v dx and f (v) = (f, v)0,� := ∫
�

f v dx.

3 Interior penalty formulation

We shall study a discretization of this problem by the finite element method
using meshes that generally do not align along certain interfaces. This situ-
ation arises when the domain � is split into p non-overlapping subdomains
�i, i = 1, . . . , p, and each subdomain is meshed (triangulated) indepen-
dently of the others. We assume that the number of subdomains is fixed and
each subdomain is a shape regular polyhedron. A model situation of this type
for d = 2 is shown in Figure 1. We denote by γij the interface between two
subdomains �i and �j and by � the union of all interfaces γij .

We define

V := {v ∈ L2(�) : v|�i
∈ H 1(�i) ∩ H 1

0 (�)},
Q := L2(∪∂�i),

a(u, v) :=
∑

i

(a∇u, ∇v)0,�i
:=

∑

i

ai(u, v),

c(p, q) := (p, q)0,� :=
∫

�

pq ds,

(p, q)0,γij
:=

∫

γij

pq ds, and

� u := [u]�.

Here the jump [u] is defined as the difference of the traces of a function u

on �. We specify a “master” side of each interface γij so on γij the jump
is defined always as [u]γij

= u|�i
− u|�j

, where �i is the domain from the
master side of γij .

We approximate the original problem (2.1) by the following problem
(which we subsequently call the interior penalty formulation): Find uε ∈ V

such that
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Fig. 1. A domain � partitioned into four subdomains �i i = 1, 2, 3, 4 with interfaces
γij ; each subdomain is partitioned into quadrilateral finite elements independently; P is a
cross point.

Aε(uε, ϕ) := a(uε, ϕ) + ε−1c(�uε, �ϕ) = f (ϕ), for all ϕ ∈ V.(3.1)

Here ε is a small parameter that later will be chosen as the mesh size of
the finite element partition of �. The problem (3.1) is also called the primal
formulation to distinguish it from the the mixed formulation introduced in
the next section.

The formulation (3.1) allows discontinuous solutions along the interface
�. We have introduced a penalty term with a large parameter ε−1 to control
the size of the jump [uε]�. Our goal is to estimate the difference u − uε

assuming that u ∈ H 2−δ(�) for 0 ≤ δ < 1/2.
The bilinear form Aε(·, ·) defined in (3.1) is symmetric and positive defi-

nite. It is related to, but much simpler than, the corresponding discontinuous
Galerkin method used in [2], [25]. The simplification comes from the fact
that we do not have a term involving the co-normal derivative a∇u · n along
the interface � (here n is the unit normal vector along �). This simplifica-
tion comes at a cost: the proposed approximation will have almost optimal
order of convergence for linear elements only. In contrast,the non-symmetric
interior penalty Galerkin method studied in [25] has optimal order estimates
for continuous finite elements of any degree. However, our formulation leads
to a symmetric and positive definite problem, which is more convenient for
computational purposes.
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4 Study of the primal and mixed formulations

In this section, we shall study the solution of (3.1). This problem fits into
a general abstract class of parameter dependent problems which we now
describe. Let (V , ‖ · ‖V , (·, ·)V ) and (Q, ‖ · ‖c, c(·, ·)) be Hilbert spaces with
their respective norms and inner products. We assume that we are given a
continuous symmetric positive semi-definite bilinear form a(·, ·) on V × V

and a continuous linear map � : V → Q so that

a(v, w) � ||v||V ||w||V and ‖�v‖c � ||v||V , for all v, w ∈ V.

Here, and in the rest of the paper, we use the signs � and � to denote
inequalities with a constant that might depend on various parameters but is
independent of ε.

Next, we define

Aε(v, w) = a(v, w) + ε−1 c(�v, �w), for all v, w ∈ V.

We assume that the range of � is dense in Q but not necessarily closed. The
parameter ε ∈ (0, 1] is typically small. We further assume that A1(·, ·) gives
rise to an equivalent norm on V , i.e.,

‖v‖2
V � A1(v, v) � ‖v‖2

V , for all v ∈ V.(4.1)

It easily follows that Aε(·, ·) is coercive on V and satisfies

‖v‖2
V � Aε(v, v) � ε−1‖v‖2

V , for all v ∈ V.

Our approach is to reformulate (3.1) as a mixed problem following [27].
Let uε be the solution of (3.1) and define the dual variable pε ∈ Q by

pε := ε−1�uε.(4.2)

We get the mixed system for uε and pε :

a(uε, v) + c(�v, pε) = f (v) for all v ∈ V,(4.3)

c(�uε, q) − ε c(pε, q) = 0 for all q ∈ Q.(4.4)

Combining equations (4.3) and (4.4), and introducing the product space X ≡
V ×Q, we obtain the mixed variational problem: Find (uε, pε) ∈ X satisfying

Bε((uε, pε), (v, q)) = f (v) for all (v, q) ∈ X,(4.5)

with the block bilinear form

Bε((uε, pε), (v, q)) := a(uε, v) + c(�uε, q) + c(�v, pε) − ε c(pε, q).

(4.6)

The mixed bilinear form is well defined for the limit ε = 0.
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Any solution (uε, pε) of (4.5) is in the space

X0 = {(v, q) ∈ X : �v = ε q} .(4.7)

This space will play an essential role in the analysis of the proposed interior
penalty method. On the space X, we define the norm

‖(u, p)‖ε := (‖u‖2
V + ε‖p‖2

c)
1/2.(4.8)

This norm degenerates to a semi-norm for ε = 0. The bilinear form Bε(·, ·)
is continuous with parameter dependent bounds for that norm, namely, for
(u, p) ∈ X and (v, q) ∈ X

Bε((u, p), (v, q)) = a(u, v) + c(�u, q) + c(�v, p) − ε c(p, q)

� (
a(u, u) + ‖�u‖2

c + ‖p‖2
c + ε ‖p‖2

c

)1/2

× (
a(v, v) + ‖�v‖2

c + ‖q‖2
c + ε ‖q‖2

c

)1/2

� ε−1 ‖(u, p)‖ε ‖(v, q)‖ε.(4.9)

On the other hand, Bε(·, ·) provides a uniformly continuous mapping from
the dual of X (with respect to the norm ‖(·, ·)‖ε) into X. This is formulated
in the following theorem:

Theorem 4.1 Let f and g be continuous linear functionals on V and Q,
respectively. Then the extended mixed problem:

Bε((u, p), (v, q)) = f (v) + g(q) for all (v, q) ∈ V × Q(4.10)

has a unique solution (u, p) ∈ X. Moreover,

‖u‖2
V + ε−1‖�u‖2

c + ε‖p‖2
c � ‖f ‖2

V ∗ + ε−1‖g‖2
Q∗ .(4.11)

Here ‖f ‖V ∗ and ‖g‖Q∗ denote the norms of the linear functionals.

Proof. First, we construct a solution by means of the primal problem. Since
� : V → Q is continuous, and g(·) is in Q∗, the functional g(�·) is contin-
uous on V :

|g(�v)| ≤ ‖g‖Q∗‖�v‖c � ‖g‖Q∗‖v‖V .

Let u ∈ V be the solution of

a(u, v) + ε−1c(�u, �v) = f (v) + ε−1g(�v) for all v ∈ V.

We use (4.1) to get

‖u‖2
V + ε−1‖�u‖2

c � a(u, u) + ε−1 c(�u, �u)

= f (u) + ε−1g(�u)

� ‖f ‖V ∗‖u‖V + ε−1/2‖g‖Q∗ ε−1/2‖�u‖c

� (‖f ‖2
V ∗ + ε−1‖g‖2

Q∗
)1/2 (‖u‖2

V + ε−1‖�u‖2
c

)1/2
.
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Dividing by (‖u‖2
V + ε−1‖�u‖2

c)
1/2 gives the bound for u. By the Riesz

Representation Theorem, we define g̃ ∈ Q such that

c(g̃, q) = g(q) for all q ∈ Q

and find that

p = ε−1 (�u − g̃) .

Clearly,

ε ‖p‖2
c � ε−1‖�u‖2

c + ε−1‖g‖2
Q∗ � ‖f ‖2

V ∗ + ε−1‖g‖2
Q∗ .

We verify that (u, p) is a solution of (4.10). Indeed, for all (v, q) ∈ X,

Bε((u, p), (v, q)) = a(u, v) + c(�u, q) + c(�v, ε−1(�u − g̃))

−εc(ε−1(�u − g̃), q)

= a(u, v) + ε−1c(�u, �v) − ε−1c(g̃, �v) + c(g̃, q)

= f (v) + g(q).

Finally, we prove that the solution is unique. Any solution (u, p) of the
homogeneous problem satisfies

0 = Bε((u, p), (u, �u − p))

= a(u, u) + c(�u, �u) + ε c(p, p) − ε c(p, �u)

≥ a(u, u) + (1 − ε

2
) c(�u, �u) + ε

2
c(p, p).

Thus, zero is the only solution of the homogeneous equation and the proof is
complete. ��

We will now demonstrate the benefit in using the mixed form. Namely, in
Theorem 4.3 we will show an a priori estimate of the solution to the problem
(4.10) that is uniform in ε > 0.

Define the norm ‖p‖Q,0 for p ∈ Q by

‖p‖Q,0 = sup
v∈V

c(p, �v)

‖v‖V

.(4.12)

This is a norm since �V is dense in Q. Further, denote by Q0 the closure of
�V in the norm ‖ · ‖Q,0. In general, ‖.‖Q,0 is a weaker norm than ‖.‖c. By
definition, � has a closed range in Q∗

0. In the limit case (ε = 0) the bilinear
form Bε((u, p), (v, q)) is continuous and stable on V × Q0:
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Theorem 4.2 (Brezzi, e.g., [10], Proposition 1.3) The bilinear form

B0((u, p), (v, q)) = a(u, v) + c(�u, q) + c(�v, p)

is continuous, i.e.,

B0((u, p), (v, q)) � (‖u‖2
V + ‖p‖2

Q,0)
1/2(‖v‖2

V + ‖q‖2
Q,0)

1/2,(4.13)

and stable, i.e.,

sup
u∈V, p∈Q0

B0((u, p), (v, q))

(‖u‖2
V + ‖p‖2

Q,0)
1/2

� (‖v‖2
V + ‖q‖2

Q,0)
1/2,(4.14)

on the space V × Q0.

For the case ε > 0, we need a norm that is ε–dependent. Namely, we define

‖p‖Q := ‖p‖Q,ε := (‖p‖2
Q,0 + ε‖p‖2

c

)1/2
.(4.15)

This norm is equivalent to ‖.‖c for fixed ε > 0, but not necessarily uniformly
with respect to ε since obviously ε‖p‖2

c ≤ ‖p‖2
Q. We define the product

space

X = V × Q

with the norm

‖(u, p)‖X = (‖u‖2
V + ‖p‖2

Q)1/2.(4.16)

The following theorem states that Bε(·, ·) is bounded in X and satisfies an
inf-sup condition with a constant independent of ε:

Theorem 4.3 Assume that (4.1) is satisfied. Let Bε(·, ·) and ‖·‖X be defined
by (4.5) and (4.16), respectively. Then:

• The bilinear form Bε(·, ·) is uniformly continuous on X , i.e.,

Bε((u, p), (v, q)) � ‖(u, p)‖X ‖(v, q)‖X for all (u, p), (v, q) ∈ X ;
(4.17)

• The bilinear form Bε(·, ·) is uniformly stable on X , i.e.,

sup
(u,p)∈X

Bε((u, p), (v, q))

‖(u, p)‖X
� ‖(v, q)‖X for all (v, q) ∈ X ;(4.18)

• the mixed problem Bε((u, p), (v, q)) = f (v) + g(q) for all (v, q) ∈
V × Q has unique solution for any f ∈ V ∗ and g ∈ Q∗ and the solution
satisfies the a priori estimate:

‖(u, p)‖X � ‖f ‖V ∗ + ‖g‖Q∗ .(4.19)
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Proof. The proof of the continuity follows the steps of the proof of estimate
(4.9) but because of the new stronger norm in Q (see (4.15)), we have an
improved estimate for the mixed term:

c(�u, q) ≤ ‖u‖V sup
v∈V

c(�v, q)

‖v‖V

= ‖u‖V ‖q‖Q,0

Thus, we get uniform continuity.
We need only to verify (4.18). To this end, fix (v, q) ∈ X . By definition

of the norm ‖.‖Q,0, there exists a ṽ ∈ V such that

c(�ṽ, q)

‖ṽ‖V

� ‖q‖Q,0.

We are free to scale ṽ in such a way that

‖ṽ‖V = ‖q‖Q,0 and c(�ṽ, q) � ‖q‖2
Q,0.

Let (ũ, p̃) be the unique solution (by Theorem 4.1) of

Bε((ũ, p̃), (w, r)) = (v, w)V + c(�ṽ, r) + ε c(q, r) for all (w, r) ∈ X .

(4.20)

We will use (ũ, p̃) to verify (4.18). First, we see that

Bε((ũ, p̃), (v, q)) = (v, v)V + c(�ṽ, q) + ε c(q, q)

� ‖v‖2
V + ‖q‖2

Q,0 + ε ‖q‖2
c

= ‖(v, q)‖2
X ,(4.21)

so that

sup
(u,p)∈X

Bε((u, p), (v, q))

‖(u, p)‖X
≥ Bε((ũ, p̃), (v, q))

‖(ũ, p̃)‖X
� ‖(v, q)‖2

X
‖(ũ, p̃)‖X

.

Thus, we need only to show that

‖(ũ, p̃)‖X � ‖(v, q)‖X .

By the definition of Bε(·, ·) and (4.20), for all (w, r) ∈ X ,

Bε((ũ − ṽ, p̃), (w, r)) = Bε((ũ, p̃), (w, r)) − Bε((ṽ, 0), (w, r))

= (v, w)V + c(�ṽ, r) + ε c(q, r)

− [a(ṽ, w) + c(�ṽ, r)]

= (v, w)V − a(ṽ, w) + ε c(q, r).

Applying Theorem 4.1 gives

‖ũ − ṽ‖2
V + ε ‖p̃‖2

c � ‖v‖2
V + ‖ṽ‖2

V + ε‖q‖2
c .
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Thus,

‖ũ‖2
V + ε ‖p̃‖2

c � ‖v‖2
V + ‖q‖2

Q,0 + ε ‖q‖2
c = ‖(v, q)‖2

X .

Finally, we need to estimate ‖p̃‖Q,0. Using (w, 0) in (4.20) gives

Bε((ũ, p̃), (w, 0)) ≡ a(ũ, w) + c(�w, p̃) = (w, v)V , for all w ∈ V.

Consequently,

‖p̃‖Q,0 = sup
w∈V

c(�w, p̃)

‖w‖V

= sup
w∈V

(w, v)V − a(ũ, w)

‖w‖V

� ‖v‖V + ‖ũ‖V � ‖(v, q)‖X .

Combining the above estimates completes the proof. ��

5 Analysis of the interior penalty approximation

In this section, we derive the basic error estimates for the proposed interior
penalty method (3.1). We present the estimate for the general case when
the partition of � into subdomains �i has “cross-points” (see Figure 1). For
d = 2, the cross-points are the end points of the edges γij that are in the
interior of �. For d = 3, the cross-points are the edges of γij that are in
the interior of �. The analysis of the case without cross-points is somewhat
simpler and is discussed at the end of this section.

We use some fundamental results from the domain decomposition litera-
ture (see [7,8]). Since all subdomains �i are shape regular, the estimate

‖v|γij
‖

H
1/2
00 (γij )

� ‖v‖H 1(�i)
(5.1)

holds for functions v ∈ H 1(�i) which vanish on ∂�i \γij . Here, v|γij
is the

trace of v on γij . We note also that given any σij ∈ H
1/2
00 (γij ), there is an

extension v satisfying the above estimates. The following proposition plays
a key role in the proof of the error estimate for the interior penalty method.

Proposition 5.1 For any ε > 0 and λ ∈ L2(�) with λ|γij
∈ H 1/2(γij ), the

following estimate is valid:

‖λ‖Q∗ ≤ C log ε−1
( ∑

γij

‖λ‖2
H 1/2(γij )

)1/2
.(5.2)

The constant C is independent of ε but depends on the shape and the number
of subdomains.
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The proof of this estimate is given at the end of this section. Using it, we now
prove the main result in this section:

Theorem 5.1 Assume that the solution u of (2.1) is H 2−δ(�)–regular for
some δ ∈ [0, 1/2). Then

||u − uε||V ≤ Cε1−δ(log ε−1)1−2δ||u||H 2−δ(�), 0 ≤ δ ≤ 1/2.(5.3)

Here, the constant C is independent of ε.

Proof. We first note that the solution u of the problem (2.1) satisfies the
identity,

Aε(u, ϕ) = f (ϕ) + c(a∇u · n, �ϕ), for all ϕ ∈ V,(5.4)

where the normal vector n is always pointing outward from the master side of
γij . Here, we have used the fact that the exact solution has continuous normal
flux, i.e., in particular, [a∇u · n]|� = 0. To simplify the notations, we define
the function

θ = a∇u · n on �.

Subtracting (3.1) and (5.4) gives the following equation for the error e =
u − uε :

Aε(e, ϕ) = c(θ, �ϕ) for all ϕ ∈ V.

To use the a priori estimates of the mixed setting, we shall put this prob-
lem again in a mixed form. Namely, we introduce a new dependent variable
E := a∇u · n − ε−1�e = θ − ε−1�e defined on � so that the pair (e, E)

satisfies:

Bε((e, E), (v, q)) = εc(θ, q) for all (v, q) ∈ V × Q.

The estimate (4.19) will provide a basis for the analysis of the error (e, E),
namely,

||e||V + ||E||Q � ε sup
q∈Q

c(θ, q)

||q||Q .(5.5)

Because ||q||Q ≥ ε1/2||q||c, we easily get

||e||V + ||E||Q � √
ε||θ ||0,�.(5.6)

The above estimate is an easy corollary of the set up of the problem but it
yields an error for the interior penalty method of order at most O(ε1/2). We
can improve it when θ is a smoother function. To accomplish this, we first
apply estimate (5.2) for λ = θ to get:

||e||V + ||E||Q � ε‖θ‖Q∗ � ε log ε−1
( ∑

γij

‖θ‖2
H 1/2(γij )

)1/2
.(5.7)
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Second, we interpolate between the spaces L2(γij ) and H 1/2(γij ) to get

‖θ‖H 1/2−δ(γij ) � ‖θ‖1−2δ

H 1/2(γij )
‖θ‖2δ

0,γij
.

Next, we observe that interpolated norm with δ ∈ [0, 1/2] between



∑

γij

‖θ‖2
0,γij





1/2

and




∑

γij

‖θ‖2
H 1/2(γij )





1/2

is bounded by




∑

γij

‖θ‖2
H 1/2−δ(γij )





1/2

.

This fact follows from the definition of the real interpolation method [23].
Finally, for u ∈ H 2−δ(�), 0 ≤ δ ≤ 1/2, one can show that

‖θ‖H 1/2−δ(γij ) = ‖a∇u · n‖H 1/2−δ(γij ) � ‖u‖H 2−δ(�i)
.

Interpolating estimates (5.6) and (5.7) gives the desired result (5.3). This
completes the proof of the theorem. ��

In the rest of this section, we give a proof of Proposition 5.1. This follows
immediately from the three lemmas below. The first lemma follows easily
from the extension noted at the beginning of this section.

Lemma 5.1 Given σij ∈ H
1/2
00 (γij ) for γij ⊂ �, there exists a v ∈ V such

that
[v]γij

= σij

and

‖v‖V �
( ∑

‖σij‖2
H

1/2
00 (γij )

)1/2
.

Next, for µ ∈ L2(γij ) we define the norm

‖µ‖Qij
:=

(
‖µ‖2

H−1/2(γij )
+ ε‖µ‖2

0,γij

)1/2

and its dual

‖µ‖Q∗
ij

:= sup
λ∈L2(γij )

(λ, µ)0,γij

‖λ‖Qij

.

Recall that the space Q and its dual have been defined in Section 4. We then
have the following lemma.

Lemma 5.2 For all λ ∈ Q∗,

‖λ‖Q∗ �
( ∑

γij

‖λ‖2
Q∗

ij

)1/2
.(5.8)
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Proof. Let µ ∈ Q be non-zero. First, we verify that

∑

γij

sup
σij ∈H

1/2
00 (γij )

(µ, σij )
2
0,γij

‖σij‖2
H

1/2
00 (γij )

� sup
v∈V

(µ, [v])2
0,�

‖v‖2
V

(5.9)

Set σ̄ij = ασij , where α is chosen such that ‖σ̄ij‖2
H

1/2
00 (γij )

= (µ, σ̄ij )0,γij
. By

Lemma 5.1, there exists an extension v ∈ V such that

[v]γij
= σ̄ij and ‖v‖2

V �
∑

γ̄ij

‖σ̄ij‖2
H

1/2
00 (γij )

.

Then,

∑

γij

(µ, σij )
2
0,γij

‖σij‖2
H

1/2
00 (γij )

=
∑

γij

(µ, σ̄ij )0,γij
= (µ, [v])0,� = (µ, [v])2

0,�

‖v‖2
V

‖v‖2
V

(µ, [v])0,�

� (µ, [v])2
0,�

‖v‖2
V

∑

γij

‖σ̄ij‖2
H

1/2
00 (γij )

∑

γij

(µ, σ̄ij )0,γij

= (µ, [v])2
0,�

‖v‖2
V

.

The inequality (5.9) follows.
It immediately follows from (5.9) that

∑

γij

‖µ‖2
Qij

� ‖µ‖2
Q.(5.10)

We continue with

(λ, µ)0,� =
∑

γij

(λ, µ)0,γij
≤

∑

γij

‖λ‖Q∗
ij
‖µ‖Qij

≤ ( ∑

γij

‖λ‖2
Q∗

ij

)1/2( ∑

γij

‖µ‖2
Qij

)1/2

� ( ∑

γij

‖λ‖2
Q∗

ij

)1/2‖µ‖Q.

The lemma follows dividing by ‖µ‖Q and taking the supremum. ��
Lemma 5.3 For λ ∈ L2(γij ),

‖λ‖Q∗
ij

� log ε−1 ‖λ‖H 1/2(γij ).(5.11)
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Proof. The proof of this lemma is based on techniques from the analysis of
domain decomposition preconditioners. We illustrate the proof in the case of
three spatial dimensions. The two dimensional case is similar.

Let λ be in L2(γij ) and Sε be a finite element subspace of H 1(γij ) of
quasi-uniform mesh-size ε. The L2-orthogonal projection operator Q onto
Sε is bounded on H 1/2(γij ) and satisfies

ε−1/2‖λ − Qλ‖0,γij
+ ‖Qλ‖H 1/2(γij ) ≤ c‖λ‖H 1/2(γij ).(5.12)

We first split λ = (λ − Qλ) + Qλ, and further decompose the finite element
part

Qλ = λ1 + λ2

such that λ1 = Qλ on ∂γij and λ1 = 0 on all interior nodes of γij (λ2 being
the remainder vanishing at ∂γij ).

A simple transformation argument and Lemma 4.2 of [8] gives

‖λ1‖0,γij
� ε1/2‖λ1‖L2(∂γij ) � ε1/2 (log ε−1)1/2 ‖Qλ‖H 1/2(γij ).

Lemma 4.3 of [8] gives

‖λ2‖H
1/2
00 (γij )

� log ε−1 ‖Qλ‖H 1/2(γij ).

Now, we use the above splitting to get

‖λ‖Q∗
ij

= sup
µ∈L2(γij )

(λ, µ)0,γij

‖µ‖Qij

= sup
µ∈L2(γij )

(λ − Qλ, µ)0,γij
+ (λ1, µ)0,γij

+ (λ2, µ)0,γij

‖µ‖H−1/2(γij ) + ε1/2‖µ‖0,γij

.

Further, using the estimate (5.12) we have

sup
µ∈L2(γij )

(λ − Qλ, µ)0,γij

‖µ‖H−1/2(γij ) + ε1/2‖µ‖0,γij

≤ sup
µ∈L2(γij )

‖λ − Qλ‖0,γij
‖µ‖0,γij

‖µ‖H−1/2(γij ) + ε1/2‖µ‖0,γij

� ‖λ‖H 1/2(γij ).

Similarly, using the estimates for λ1 and λ2 we get

(λ1, µ)0,γij
≤ ‖λ1‖0,γij

‖µ‖0,γij
� ε1/2 (log ε−1)1/2 ‖λ‖H 1/2(γij )‖µ‖0,γij

and

(λ2, µ)0,γij
≤ ‖λ2‖H

1/2
00 (γij )

‖µ‖H−1/2(γij )

� log ε−1 ‖Qλ‖H 1/2(γij )‖µ‖H−1/2(γij ).



R.D. Lazarov et al.

Finally, combining the estimates for all three parts, we complete the proof:

‖λ‖Q∗
ij

= sup
µ∈L2(γij )

(λ, µ)0,γij

‖µ‖Qij

� log ε−1‖λ‖H 1/2(γij ).

��

In the case without cross-points, we can get a slightly better result. In this
case, γij = �. The following theorem provides an error estimate in this case.

Theorem 5.2 In the case of absence of “cross-points,” the following esti-
mate holds

||e||V + ||E||Q � ε1−δ||u||H 2−δ(�)(5.13)

for u ∈ H 2−δ(�), 0 ≤ δ < 1/2.

Proof. Because there are no “cross-points” for v ∈ V , the jump [v] = �v is
in H

1/2
00 (�). Therefore, there is an extension, which satisfies (5.1) so that

||q||Q � sup
v∈V

c(�v, q)

||v||V � ||q||H−1/2(�).

This implies

sup
q∈Q

c(θ, q)

||q||Q � sup
q∈Q

c(θ, q)

||q||H−1/2(�)

� ||θ ||
H

1/2
00 (�)

.

so that

||e||V + ||E||Q � ε||θ ||
H

1/2
00 (�)

.(5.14)

Interpolating (5.6) and (5.14) we get

||e||V + ||E||Q � ε1−δ||θ ||H 1/2−δ(�).

The result then follows from the trace estimate

‖θ‖H 1/2−δ(�) � ‖u‖H 2−δ(�),

which holds for polygonal interface � (cf. [17]). ��
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6 Finite element approximation of the penalty formulation

6.1 Finite element formulation and error analysis

Now, we discretize the problem (3.1) by the finite element method. Each sub-
domain �i is meshed independently by a quasi-uniform and shape-regular
triangulation Ti , and consequently, the whole domain has a finite element
splitting T = ∪iTi . Quasi-uniformity of the mesh means that for τ ∈ T and
hτ = diam(τ), |τ | = meas(τ) we have |τ | ≈ hd

τ , where d = 2, 3 is the
dimension of the space. We shall use also the global mesh-size parameter

h = max
τ∈T

hτ .

Our analysis uses the condition that the mesh T is globally quasi-uniform,
i.e., h ≈ hτ for all τ ∈ T . We stress again, there is no assumption that along
an interface γij , the triangulations Ti and Tj produce the same mesh.

Let Vi,h be the conforming (see [13]) finite element space of piecewise
linear functions associated with the triangulation Ti . Further, let Vh : Vh|�i

=
Vi,h, for i = 1, . . . , p, be the finite element space on T . The functions in Vh

are, in general, discontinuous across γij . However, their traces on γij from
�i and �j are well-defined.

Let Ih : V → Vh be an operator such that foru∈H 2−β(�) and 0 ≤ β ≤ 1:

h−1 ‖u − Ihu‖L2(�) + ‖u − Ihu‖H 1(�) + h−1/2‖u − Ihu‖L2(�)

� h1−β‖u‖H 2−β(�).(6.1)

Now, the interior penalty finite element method reads as: Find uε
h ∈ Vh

such that

Aε(uε
h, φ) := a(uε

h, φ) + ε−1c(�uε
h, �φ) = f (φ) for all φ ∈ Vh.(6.2)

Obviously, the bilinear form Aε(·, ·) is symmetric and positive definite on
Vh × Vh. Therefore, the corresponding finite element “stiffness” matrix is
symmetric and positive definite, and the finite element system has a unique
solution.

Now, we derive an error estimate for the finite element interior penalty
method. According to our construction V = ∑

H 1(�i) ∩ H 1
0 (�) and

(w, v)V =
∑

i

∫

�i

(∇w · ∇v + wv) dx.

Because the number of subdomains p is finite and all �i are shape-regu-
lar, it follows that A1(v, v) is uniformly equivalent to the norm ‖v‖2

V , and
the inequality (4.1) holds. Therefore, the results of the previous sections are
valid, and we can apply Theorem 5.1.



R.D. Lazarov et al.

The error estimate is almost an immediate consequence of Theorem 5.1
and the approximation property (6.1) of the space Vh. Indeed, the error uε−uε

h

satisfies the orthogonality property

Aε
h(uε − uε

h, φ) = 0 for all φ ∈ Vh.

Using the coercivity of Aε(·, ·), we get

‖uε − uε
h‖2

V � Aε(uε − uε
h, uε − uε

h)

� inf
v∈Vh

Aε(uε − v, uε − v)

� Aε(uε − u, uε − u) + Aε(u − Ihu, u − Ihu).

Now the estimates (5.3) and (6.1) produce the following result:

‖u − uε
h‖V � ‖u − uε‖V + ‖uε − uε

h‖V

� (ε1−δ| log ε|1−2δ + h1−δ + ε−1/2h3/2−δ)‖u‖H 2−δ(�)

for u ∈ H 2−δ(�), 0 ≤ δ < 1/2.
The above estimates suggest that for the penalty parameter ε ≈ h we get

an almost optimal convergence rate. Thus, we shall use ε = β−1h with β, a
real number. The following theorem is a corollary of the above estimate:

Theorem 6.1 Assume that the solution u of the problem (2.1) belongs to
H 2−δ(�) for some 0 ≤ δ < 1/2. Then the solution uh ∈ Vh of the interior
penalty finite element method

ah(uh, φ) + βh−1c(�uh, �φ) = f (φ) for all φ ∈ Vh

exists and satisfies the a priori error estimate

‖u − uh‖V � h1−δ| log h|1−2δ‖u‖H 2−δ(�).

Moreover, the condition number of the corresponding finite element “stiff-
ness” matrix is the same as in the case of standard Galerkin method with
linear elements, namely, O(h−2).

6.2 Numerical tests

In this subsection, the performance of the proposed penalty method is reported
on two model examples for the Poisson equation on the unit square with
Dirichlet boundary conditions. Our finite element implementation handles
arbitrary triangulations of the domain and linear finite elements.

In the table below, we present the error u − uh measured in discrete
L2 and H 1-norms for two test problems for the Poisson equation. For both
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examples we have set β = 1. The domain is split into four equal subdo-
mains that are triangulated independently so that the meshes do not match
along the interface �. The test problems are designed to check the accu-
racy of the interior penalty method. The first example has exact solution
u(x1, x2) = sin2(2πx1) sin2(2πx2) so that the normal derivative along the
interfaces γij is zero. This means that the interior penalty method should
have the same accuracy as the standard Galerkin method in both L2- and
H 1-norms. This is readily observed in Table 1. The second test problem has
exact solution u(x1, x2) = x2

1 +x2
2 . We have observed from our computations

that the interface is the main contributor to the error.

Table 1. Numerical results for four subdomains with non-matching grids

exact solution u exact solution u

sin2(2πx1) sin2(2πx2) x2
1 + x2

2

level # nodes L2-error H 1-error ratio L2-error H 1-error ratio cond. #

1 96 0.05536 1.09488 0.00471 0.06638 30

2 225 0.01567 0.58970 1.85 0.00295 0.03764 1.76 105

3 833 0.00401 0.30059 1.96 0.00105 0.02085 1.80 439

4 3201 0.00101 0.15108 1.99 0.00054 0.01145 1.81 1829

5 12545 0.00025 0.07564 2.00 0.00028 0.00639 1.80 7385

6 52695 0.00006 0.03783 2.00 0.00014 0.00353 1.81 29438

order ≈ 2 ≈ 1 ≈ 1 ≈ 0.91

Note that the convergence in L2-norm is of first order, while the con-
vergence in H 1-norm is approximately first order. In the discrete L2- and
H 1-norms, the relative error on the finest (6th) level is 0.03% and 1.95% for
the exact solution u(x1, x2) = sin2(2πx1) sin2(2πx2) and 0.08% and 0.72%
for the exact solution u(x1, x2) = x2

1 + x2
2 .

In addition, we ran numerical experiments which involved changing the
weight β in the penalty term. The number of nodes were kept fixed at about
820 and 830, correspondingly, for matching and non-matching grids, which
gives rise to h ≈ 0.04. In both cases the exact solution was u(x1, x2) =
x2

1 −x2
2 . The computations, presented in Tables 2 and 3, show that by increas-

ing β we put more weight on the penalty term, and as expected, this leads
to decreasing the error in all norms. However, for β larger than h−1/2, there
is no significant improvement in the accuracy. Moreover, in the case of non-
matching grids very large β causes deterioration of the error in maximum
and H 1-norm, and as expected, increases the condition number.

More examples and computational results, including condition number
and errors in various norms, are reported in [21].



R.D. Lazarov et al.

Table 2. Varying β for matching grids with 820 points

β L∞-error L2-error H 1-error condition #

0.1 0.26508 0.06434 0.36322 440

1 0.03589 0.00915 0.07158 440

h−1/2 ≈ 5 0.00798 0.00191 0.03802 615

10 0.00411 0.00101 0.03574 1162

1000 0.00004 0.00027 0.03485 42261

Table 3. Varying β for non-matching grids with 833 points

β L∞-error L2-error H 1-error condition #

0.1 0.86032 0.36833 1.14018 420

1 0.13809 0.04873 0.26776 420

h−1/2 ≈5 0.03429 0.01038 0.16705 1190

10 0.01859 0.00586 0.15974 2273

1000 0.02523 0.00486 0.16925 88288
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